Factoring pq with Quadratic Forms: Nice Cryptanalyses
نویسندگان
چکیده
We present a new algorithm based on binary quadratic forms to factor integers of the form N = pq. Its heuristic running time is exponential in the general case, but becomes polynomial when special (arithmetic) hints are available, which is exactly the case for the so-called NICE family of public-key cryptosystems based on quadratic fields introduced in the late 90s. Such cryptosystems come in two flavours, depending on whether the quadratic field is imaginary or real. Our factoring algorithm yields a general key-recovery polynomial-time attack on NICE, which works for both versions: Castagnos and Laguillaumie recently obtained a total break of imaginary-NICE, but their attack could not apply to real-NICE. Our algorithm is rather different from classical factoring algorithms: it combines Lagrange’s reduction of quadratic forms with a provable variant of Coppersmith’s lattice-based root finding algorithm for homogeneous polynomials. It is very efficient given either of the following arithmetic hints: the public key of imaginary-NICE, which provides an alternative to the CL attack; or the knowledge that the regulator of the quadratic field Q(√p) is unusually small, just like in real-NICE.
منابع مشابه
Factoring pq2 with Quadratic Forms: Nice Cryptanalyses
We present a new algorithm based on binary quadratic forms to factor integers of the form N = pq. Its heuristic running time is exponential in the general case, but becomes polynomial when special (arithmetic) hints are available, which is exactly the case for the so-called NICE family of public-key cryptosystems based on quadratic fields introduced in the late 90s. Such cryptosystems come in t...
متن کاملSmallest Reduction Matrix of Binary Quadratic Forms And Cryptographic Applications
We present a variant of the Lagrange-Gauss reduction of quadratic forms designed to minimize the norm of the reduction matrix within a quadratic complexity. The matrix computed by our algorithm on the input f has norm O f 1 2 Δ 4 f , which is the square root of the best previously known bounds using classical algorithms. This new bound allows us to fully prove the heuristic lattice based attack...
متن کاملOn the Security of Cryptosystems with Quadratic Decryption: The Nicest Cryptanalysis
We describe the first polynomial time chosen-plaintext total break of the NICE family of cryptosystems based on ideal arithmetic in imaginary quadratic orders, introduced in the late 90’s by Hartmann, Paulus and Takagi [HPT99]. The singular interest of these encryption schemes is their natural quadratic decryption time procedure that consists essentially in applying Euclid’s algorithm. The only...
متن کاملFactoring N = pq
We discuss the problem of factoring N = pq and survey some approaches. We then present a specialized factoring algorithm that runs in time Õ(q0.31), which is comparable to the runtime Õ(p) of the factoring algorithm for integers of the form N = pq presented in [1]. We then survey the factoring algorithm of [1] and discuss the number of advice bits needed for it to run in polynomial time. Furthe...
متن کاملAn Adaptation of the NICE Cryptosystem to Real Quadratic Orders
Security of electronic data has become indispensable to today’s global information society, and public-key cryptography, a key element to securing internet communication, has gained increasing interest as a vital subject of research. Numerous public-key cryptosystems have been proposed that use allegedly intractable number theoretic problems as a basis of their security. One example is NICE, in...
متن کامل